
Synchronous activation within the default mode network correlates
with perceived social support

Xianwei Che a,b, Qinglin Zhang a,b, Jizheng Zhao c, Dongtao Wei a,b,
Bingbing Li a,b, Yanan Guo a,b, Jiang Qiu a,b,n, Yijun Liu a,b

a Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
b Department of Psychology, Southwest University, Chongqing 400715, China
c College of Mechanical and Electronic Engineering, Northwest A&F University, Shaanxi 712100, China

a r t i c l e i n f o

Article history:
Received 18 February 2014
Received in revised form
14 July 2014
Accepted 31 July 2014
Available online 8 August 2014

Keywords:
Perceived social support
Default mode network
Synchronicity

a b s t r a c t

Perceived social support emphasizes subjective feeling of provisions offered by family, friends and
significant others. In consideration of the great significance of perceived social support to health
outcomes, attempt to reveal the neural substrates of perceived social support will facilitate its appli-
cation in a series of mental disorders. Perceived social support potentially relies on healthy interpersonal
relationships calling for cognitive processes like perspective taking, empathy and theory of mind.
Interestingly, functional activations and connectivity within the default mode network (DMN) are
extensively involved in these interpersonal skills. As a result, it is proposed that synchronous activities
among brain regions within the DMN will correlate with self-report of perceived social support. In the
present study, we tried to investigate the associations between coherence among the DMN regions and
perceived social support at resting state. A total of 333 (145 men) participants were directed to fulfill the
Multidimensional Scale of Perceived Social Support (MSPSS) after a 484-s functional magnetic resonance
imaging (fMRI) scanning without any task. As a result, seed-based functional connectivity and power
spectrum analyses revealed that heightened synchronicity among the DMN regions was associated with
better performance on perceived social support. Moreover, results in the present study were indepen-
dent of different methods, structural changes, and general cognitive performance.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Across the long history of human development, human beings
benefit to survive in complex social environments from broad
social interactions (De Waal, 1982; Cheney & Seyfarth, 2007).
Specifically, perceived social support from others can be regarded
to reflect the social relations between self and others. Perceived
social support puts emphasis on individuals' self-judgment on
available social support (Zimet, Dahlem, Zimet, & Farley, 1988;
Zimet, Powell, Farley, Werkman, & Berkoff, 1990). As a kind of
social connections, perceived social support is proved to contri-
bute to human health outcomes (Gulick, 1994; Helgeson & Cohen,
1996; Feldman, Downey, & Schaffer-Neitz, 1999; Peirce, Frone,
Russell, Cooper, & Mudar, 2000). Moreover, relatively low level of
perceived social support is associated with multiple mental dis-
orders like loneliness (Solomon, Mikulincer, & Hobfoll, 1986; Jones
& Moore, 1987; Cacioppo et al., 2006), anxiety and depression

(Cohen & Wills, 1985; Zimet et al., 1988; Peirce et al., 2000;
Mustafa, Nasir, & Yusooff, 2010; Hyde, Gorka, Manuck, & Hariri,
2011; Stice, Rohde, Gau, & Ochner, 2011).

As mentioned, the level of perceived social support depends on
to what extent individuals are socially connected with others.
Generally speaking, healthy social relations call for complex
interpersonal skills like perspective taking, empathy and theory
of mind. Interestingly, all the mentioned social skills rely on a
robust pattern of intrinsic brain activity known as the default
mode network (DMN) (for reviews see Schilbach, Eickhoff,
Rotarska-Jagiela, Fink, & Vogeley (2008); Mars et al. (2012)). The
default mode network, which is more activated during resting
state than during goal-directed analyses of environmental stimuli
(Shulman et al., 1997; Raichle et al., 2001), is demonstrated to be
composed of regions along the anterior and posterior midline, the
lateral parietal cortex (LP), prefrontal cortex (PFC), and the medial
temporal lobe (Buckner, Andrews‐Hanna, and Schacter, 2008).
Generally speaking, regions within the default network tend to
be activated in multiple cognitive processes like autobiographical
memory, thinking about one's future, theory of mind and affective
decision making (Ochsner et al., 2004; Buckner et al., 2008;
Spreng, Mar, & Kim, 2009).
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In fact, numerous imaging studies confirm the critical role for
the DMN in interpersonal skills of perspective taking, empathy and
theory of mind. For example, brain regions recruited in adopting
the perspective of others versus self-perspective are located at
core regions of the DMN in medial prefrontal cortex (PFC) and
posterior cingulate cortex (PCC) (Ruby & Decety, 2001, 2003,
2004). Moreover, imaging others in painful situation versus self
in painful situation recruits most parts of the default network in
PCC/precuneus and the right temporo-parietal junction (TPJ) as
well as a cluster in the middle frontal gyrus (Jackson, Brunet,
Meltzoff, & Decety, 2006). And empathy elicited by abstract visual
information on the other's affective state engages brain areas
strongly in precuneus, ventral medial prefrontal cortex (vmPFC),
superior temporal cortex, and TPJ, which is suggested to infer and
represent mental states of self and other (Lamm, Decety, & Singer,
2011). Besides, theory of mind can be regarded as the cognitive
and regulatory component of empathy (Walter, 2012) generating
activations in a large network including ventral- and dorsal medial
prefrontal cortex (vmPFC and dmPFC), precuneus, TPJ, temporal
poles (TP) and superior temporal sulcus (STS) (Frith & Frith, 2003;
Gallagher & Frith, 2003; Walter et al., 2004; Frith & Frith, 2006a,
2006b; Carrington & Bailey, 2009). As a whole, extensive involve-
ment of the DMN is revealed in interpersonal skills that are
necessary to facilitate healthy social connections.

Generally speaking, recent years witness a rapid increase in
studies revealing the critical role of resting-state functional con-
nectivity (RSFC) within the DMN regions in social cognitions like
autobiographical memory, empathy and theory of mind (Schilbach
et al., 2008; Mars et al., 2012). Higher integration of the orbito-
frontal cortex into the anterior DMN at rest is proved to correlate
with higher pain ratings of visual stimuli depicting individuals in
painful and non-painful situations (Otti et al., 2010). Moreover,
functional connections between the TPJ and dmPFC are commonly
detected in theory of mind and morality studies (for a review see
Li, Mai, & Liu (2014)). In consideration of the extensive activations
and connections of the DMN regions in these complex skills for
social interactions, it is proposed that RSFC within the DMN
regions will correlate with healthy social relations reflected
possibly by high level of perceived social support. Moreover,
because low-frequency oscillations are believed to contribute to
functional connectivity (Cordes et al., 2001) and altered low-
frequency oscillations in the DMN are revealed in mental disorders
(Garrity et al., 2007), it's interesting to investigate whether low-
frequency oscillations in the DMN correlate with self-report of
perceived social support. Given the great significance of perceived
social support to health outcomes (Gulick, 1994; Helgeson &
Cohen, 1996; Feldman et al., 1999; Peirce et al., 2000), attempt to
reveal the neural substrates of perceived social support will gain
an understanding of these symptoms and may suggest new
therapies for these disorders.

In the present study, synchronous activities within the DMN
regions were investigated at rest to correlate with perceived social
support. Seed-based functional connectivity was analyzed to
inspect the synchronicity within the DMN regions. Moreover,
synchronous activities within the default network were also
assessed with the application of independent component analysis
(ICA) to increase the robustness against method impact, followed
by correlation analyses between self-report of social support and
spectral power of the default component in different frequency
bands. ICA was a model free data-driven approach which decom-
posed the data into independent component (Damaraju et al.,
2010). The advantage of ICA over seed-based functional connec-
tivity was that ICA did not require a predefined region of interest
(McKeown et al., 1998; Damoiseaux et al., 2006; Kasparek et al.,
2013). Besides, self-report of loneliness, general cognitive ability
and DMN structure variances (Che et al., 2014) with regard to

perceived social support were controlled as of the extensive
involvement of the DMN regions in them (Damoiseaux et al.,
2008; Cacioppo, Norris, Decety, Monteleone, & Nusbaum, 2009;
Kanai, Bahrami, Roylance, & Rees, 2011; Powers, Wagner, Norris, &
Heatherton, 2011; Cole, Yarkoni, Repovš, Anticevic, & Braver, 2012;
Che et al., 2014Kanai et al., 2012). Taken together, we aimed at
testing the hypothesis that coherence among the DMN regions
was closely associated with perceived social support.

2. Methods

2.1. Subjects

Totally 350 right-handed, healthy volunteers participated in this study, of
which 11 subjects were excluded for missing any question of the behavioral
measures used and six participants were discarded owing to excessive head
motions in the scanner. Finally, a total of 333 (145 men) subjects were included
to the subsequent analyses. All the participants were undergraduate students of
Southwest University. None had a history of neurological or psychiatric illness. The
study was approved by Southwest University Brain Imaging Center Institutional
Review Board at initial stage. According to the Declaration of Helsinki, all
participants signed a written informed consent.

2.2. Assessment of perceived social support

The Multidimensional Scale of Perceived Social Support (MSPSS) was built to
measure the level of subjective feeling of social support; it was tested to be a
psychometrically sound measure of perceived social support (Zimet et al., 1988; Zimet
et al., 1990). The MSPSS scale contained 12 items ranging from family, friend to
significant other's support. Participants answered questions using a 7-point scale from
“strongly disapproval” to “strongly approval”. Examples of the MSPSS items were as
follows: “My family really tries to help me.” (Family support); “I have friends with
whom I can share my joys and sorrows.” (Friend support); “There is a special person
who is around when I am in need.” (Significant others support) (Zimet et al., 1988).

2.3. Assessment of general intelligence

The Raven's Progressive Matrices test was a good measure of the general factor
of fluid intelligence (Raven, 1938). In previous studies, the Chinese version of the
combined Raven's Progressive Matrices test (CCRPM) was testified to be a
psychometrically sound measure of fluid intelligence (Li, Hu, Cheng & Jin, 1988;
Wang & Qian, 1989; Wang, Di, & Qian, 2007). The CCRPM was composed of the
Colored Progressive Matrices (A, B, and AB sets) and the last three parts of the
Standard Progressive Matrices (C, D, and E sets), of which each set included five
items with increasing difficulty. Numbers of corrected answers given in 40 min
were counted as a measure of the CCRPM score.

2.4. Assessment of loneliness

The UCLA Loneliness Scale was a 20-items’ questionnaire measuring one's
general loneliness and degree of satisfaction with social relationships (Russell,
1996). Participants were instructed that each item described how people some-
times felt, and that they rated each item using a 4-point scale from “never” to
“always”. An example statement was “How often do you feel that there is no one
you can turn to?” After reverse scoring appropriate items, loneliness score was
counted by summing the scores of all items (α¼ 0.88).

2.5. Imaging data acquisition

Functional images were acquired in a 3.0-T Siemens Trio MRI scanner (Siemens
Medical, Erlangen, Germany). The whole-brain resting-state functional images
were obtained with the application of gradient-echo echo planar imaging (EPI)
sequences with following parameters: slices¼32, repetition time (TR) / echo time
(TE)¼2000 / 30 ms, flip angle¼901, field of view (FOV)¼220 mm�
220 mm, and thickness / slice gap¼3 / 4 mm.

2.6. Preprocessing

Preprocessing of the resting-state image data was performed with the applica-
tion of the data processing assistant for resting state (DPARSF) software (http://
www.restfmri.net/forum/DPARSF) (Yan et al., 2009). The toolbox worked on basis of
SPM8 software package (Wellcome Trust Center for Neuroimaging, London,
England). First 10 volumes of the functional images were discarded accounting
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for signal equilibrium and participants’ adaptation to immediate environment. For
the independent component analysis (ICA), the remaining 232 images were
preprocessed including slice timing, head motion correction, spatial normalization
and smoothing by using a 6-mm full-width-at-half-maximum Gaussian kernel. In
the seed-based functional connectivity analysis, the smoothed data was subse-
quently linear detrended and filtered by a band pass filter (0.01–0.08 Hz). Also, in
order to remove the potential impact of physiological artifacts, time series data for
nine covariates (global signal, white matter, cerebrospinal fluid, and six motion
parameters for head movement) were extracted and regressed out.

2.7. Data analyses

To determine the functional connectivity patterns of the DMN with regard to
perceived social support, three regions of interest (ROIs) within the DMN were
selected from the most significant foci in a metaanalysis of decreases during task
performance (Shulman et al., 1997; Fox et al., 2005). Specifically, the seed regions
were defined as spheres with a 6-mm radius centered in core regions of the DMN in
the posterior cingulate cortex (�5,�49, 40), prefrontal cortex (�1, 47, �4) and the
lateral parietal cortex (�45,�67, 36, Talairach coordinates) (Shulman et al., 1997; Fox
et al., 2005). Analyses of functional connectivity were performed for the selected seed
regions respectively. The average blood-oxygen-level-dependent (BOLD) signal time
courses within each seed region were correlated to every voxel in the whole brain for
each subject using Pearson's correlation coefficient. Then the correlation coefficients
were converted to z-scores using the Fisher r-to-z transformation before group
comparisons. To determine brain regions significantly correlated with the selected
regions, we performed random effect one-sample t-tests of individuals’ z-valued
functional connectivity maps in a voxel-wise manner. In this way, composite
functional connectivity maps were obtained for each ROI with a threshold of
po0.01 (FWE (family-wise error) corrected; T ¼5.41, df¼340) and cluster sizeZ
270 mm3 (10 adjacent voxels). Further, positive and negative functional connectivity
maps of each ROI were saved as masks for subsequent analyses.

Multiple linear regression analyses were performed separately to identify brain
regions with functional connectivity strength for the seed regions statistically
correlated with the MSPSS scale scores with the application of the DMN maps
created in the random effect one-sample t-tests, the multiple comparison correc-
tions were performed at po0.05 using false discovery rate (FDR) approach, and the
gender, age, general intelligence scores and structural variances in the post-PCC
cluster (Che et al., 2014) were included as regressors of no interest.

Independent component analysis (ICA) was performed by using the “group ICA”
function included in the fMRI toolbox (GIFT version 1.3 h; http://icatb.sourceforge.net)
developed for the analysis of fMRI data (Calhoun, Adali, Pearlson, & Pekar, 2001;
Calhoun, Liu, & Adalı, 2009; Schöpf, Windischberger, Kasess, Lanzenberger, & Moser,
2010). We took a two step data reduction approach using principal component analysis
(PCA) to perform the ICA analysis. 60 principal components were obtained from each
individual subject data in the first step. Then each of the subject's reduced data was
concatenated in time and a second PCAwas conducted to retain 50 components because
high model order ICA enabled functional segmentation of the brain cortex (Kiviniemi et
al., 2009; Abou-Elseoud et al., 2010; Allen et al., 2011). Next Infomax ICA algorithm was
used to obtain 50 independent components. At last, time courses and spatial maps were
computed for each subject in the stage of back reconstruction. The independent
component spatial maps obtained were first z-scored and then entered into random
effects analyses thresholded at p¼0.01 and corrected for family wise error (FWE) with a
cluster extent threshold of 100 voxels. The default mode component was identified by
correlating all components spatially with a default mode mask generated by WFU
Pickatlas developed at Wake Forest Pharmaceuticals University (http://www.fmri.
wfubmc.edu/) (Maldjian, Laurienti, Kraft, & Burdette, 2003). For the selected indepen-
dent component that was identified as the default mode component, a mask was
created for subsequent analyses.

We performed a power spectrum analysis on the smoothed data with the
application of the REST toolkit (Song et al., 2011). Data was first detrended and then
was combined into six equally spaced frequency bins between 0.01 and 0.24 Hz at
0.04 Hz intervals. For each frequency bin, the spectral power was first computed
within the DMN mask created in the ICA analysis, and then correlated to the MSPSS
scale scores by regressing out the gender, age, general intelligence scores and
structural variances in the post-PCC cluster (Che et al., 2014).

2.8. Supplementary analyses

As of the role for DMN suppression in a series of mental disorders like
schizophrenia (Meyer-Lindenberg et al., 2001; Whitfield-Gabrieli et al., 2009;
Anticevic, Repovs, & Barch, 2011; Metzak et al., 2011; Nejad et al., 2011; Salgado-
Pineda et al., 2011; Schneider et al., 2011; Dreher et al., 2012; Fatjó-Vilas et al., 2012)
and depression (Sheline et al., 2009; Hamilton et al., 2011), it is interesting to know
whether the anti-correlation between the DMN and the TPN (Task Positive Network)
correlates with perceived social support. Composite functional connectivity maps
obtained for each ROI in seed-based functional connectivity were used to create the
DMN and the TPN masks. Then the ROI wise functional connectivity was applied to
calculate the DMN–TPN anti-correlation with the covariates removed data with the
DMN and the TPN masks as two ROIs (Song et al., 2011). Next, the z-valued functional

connectivity between the DMN and the TPN were correlated with the MSPSS scale
scores by ruling out the gender, age, general intelligence scores and structural
variances in the post-parts of the PCC cluster (Che et al., 2014). Moreover, in order
to investigate the correlations between perceived social support and functional
connectivity within the TPN regions, seed-based functional connectivity was applied
to inspect the TPN connectivity with three ROIs located in IPS (25, 57, 46), FEF (25, 13,
50) and MTG (45, 69, 2 Talairach coordinates) (Shulman et al., 1997; Fox et al., 2005).
Subsequent analyses were as similar as what discussed before.

To rule out the effects of model order on ICA analysis, supplementary analyses were
conducted by decomposing the smoothed data into 60 and 35 independent components
respectively. Subsequent correlation analyses were carried out similar to that discussed
before. Besides, spatial z-maps of the default component were used to link the DMN
connectivity and perceived social support to increase the robustness of the results in
whole-brain analyses corrected at po0.05 using FDR approach.

As collected later, only 278 (126 men) participants fulfilled the UCLA Loneliness
Scale from the original sample. We first correlated the MSPSS scale scores with the
UCLA Loneliness Scale scores and then replicated all the above analyses with
loneliness as another regressor.

3. Results

3.1. Sample descriptive

All subjects had self-report of scores for the MSPSS scale
(Mean7SD: MSPSS¼64.2577.49), the CCRPM scale (Mean7SD:
CCRPM¼66.1073.49) and the UCLA Loneliness Scale (Mean7SD:
UCLA¼41.1077.66). The MSPSS scale scores did not correlate with
age (r¼0.02, p¼0.66) and gender (r¼0.09, p¼0.11), but correlate
with the CCRPM scores (r¼�0.19, po0.005) and loneliness
(r¼�0.36, po0.001).

3.2. Seed-based connectivity

We examined brain areas that showed associations between
the MSPSS scale scores, which reflected perceived availability of
social support, and the strength of functional connectivity with the
selected brain regions. For the seed PCC, a multiple regression
analysis revealed that the MSPSS scale scores were statistically
and positively correlated with the strength of functional connec-
tivity between PCC and bilateral precuneus, bilateral ventral and
dorsal medial prefrontal cortex and bilateral inferior parietal
lobule extending to the lateral temporal cortex (see Table 1 and
Fig. 1). For the seed LP, positive correlations were observed
between the MSPSS scale scores and functional connectivity
between LP and bilateral ventral medial prefrontal cortex, bilateral
posterior cingulate cortex and bilateral inferior parietal lobule (see
Table 2 and Fig. 1). For the seed PFC, the MSPSS scale scores were
statistically correlated with the strength of functional connectivity
between PFC and bilateral posterior cingulate cortex, bilateral
inferior parietal lobule extending to the lateral temporal cortex
(see Table 3 and Fig. 1). No negative correlation was observed.

3.3. Power spectra

As shown in Fig. 2, the component that correlated most
significantly with the DMN template was selected as the default

Table 1
Brain regions with significant correlations between functional connectivity with
PCC and the MSPSS scale scores.

Region MNI coordinates Cluster size T-score

X Y Z

R/L precuneus 0 �45 36 1054 5.81
R/L medial prefrontal cortex 6 48 �18 666 5.60
L inferior parietal lobule �51 �66 30 202 4.70
R inferior parietal lobule 48 �63 39 97 4.06
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mode component (Mean¼0.55, SD¼0.02). Results showed that
spectral power within the DMN mask in the two low-frequency
bands (0.01–0.08 Hz) correlated positively with the MSPSS scale
scores regressing out the gender, age, general intelligence scores
and structural variances in the post-PCC cluster. However, sig-
nificant correlation in high frequency bands was not observed
(0.08–0.24 Hz) (Fig. 3).

3.4. Supplementary results

Results showed that the anti-correlation between the DMN and
the TPN was not related to the self-report of perceived social
support across different composite functional connectivity maps
obtained for each ROI (seed PCC: r¼�0.16, p¼0.77; seed LP:
r¼0.03, p¼0.58; seed PFC: r¼0.01, p¼0.88). Moreover, perceived
social support was not correlated with TPN connectivity across
three different ROIs.

Increased (60) and decreased (35) independent components
revealed results similar to that observed in 50 independent
components. Statistical correlations between spectral power
within the DMN mask and perceived social support were observed
only in the two low-frequency bands (0.01–0.08 Hz) (see
Figs. 1 and 2 in Supplementary materials).

Besides, perceived social support linked with DMN connectivity
in left precuneus, bilateral mPFC and right lateral temporal cortex,
namely main areas of the DMN, with the application of spatial z-
maps of the default component (see Fig. 3 in Supplementary
materials).

In spite of the negative correlation observed between perceived
social support and loneliness, seed-based functional connectivity
and ICA analyses revealed similar patterns of intrinsic connectivity
within the DMN after regressing out the UCLA Loneliness Scale
scores to those did not (see Tables 1–3 and Fig. 1).

4. Discussion

The aim of the present study was to reveal the associations
between synchronicity within the default mode network and
perceived social support. Results supported the hypothesis by
showing that heightened coherence among the DMN regions
contributed to relatively better performance on perceived social
support. Specifically, enhanced functional connections between
several hubs of the DMN, such as PCC, precuneus, IPL and PFC,
were observed in individuals scoring high in the MSPSS. Moreover,
high scorers in the MSPSS scale showed heightened low-frequency
oscillations (0.01–0.08 Hz) within the DMN, which were inter-
preted as increased synchronicity between brain regions involved
in the default mode network (Garrity et al., 2007; Cauda et al.,
2009). These results were specific by ruling out the gender, age,
loneliness, general intelligence scores and structural variances in
the post-PCC cluster and robust by factoring the effects of model
order (see Figs. 1 and 2 in Supplementary materials) and data
sources in ICA analysis (see Fig. 3 in Supplementary materials).

Fig. 1. The MSPSS scale scores were statistically correlated with the strength of
functional connectivity within the DMN regions regressing out gender, age, general
intelligence scores, loneliness and structural variances in the post-PCC cluster when
the seed regions were centered in PCC, LP and PFC respectively.

Table 2
Brain regions with significant correlations between functional connectivity with LP
and the MSPSS scale scores.

Region MNI coordinates Cluster size T-score

X Y Z

R/L posterior cingulate cortex �6 �54 45 1036 5.86
R/L ventral medial prefrontal cortex 6 45 �9 494 5.17
L inferior parietal lobule �36 �69 42 124 4.20
R inferior parietal lobule 39 �66 42 140 4.17

Table 3
Brain regions with significant correlations between functional connectivity with
PFC and the MSPSS scale scores.

Region MNI coordinates Cluster size T-score

X Y Z

R/L posterior cingulate cortex �6 �54 45 505 5.40
R/L medial prefrontal cortex �3 54 3 305 5.46
L inferior parietal lobule �51 �69 33 16 3.90
R inferior parietal lobule 48 �66 45 15 3.80
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As discussed, accumulating evidences support the proposal
that social cognitions like perspective taking, empathy and theory
of mind recruit extensive regions within the default mode net-
work. Frontal damage leads to impaired perspective-taking ability
(Price, Daffner, Stowe, & Mesulam, 1990) and cognitive flexibility

(Eslinger, 1998). Moreover, self-awareness and agency are argued
to share neural representations, of which right inferior parietal
cortex and the prefrontal cortex play a special role in interpersonal
awareness (Decety & Sommerville, 2003). Besides, theory of mind
is considered as the cognitive component of empathy (Walter
2012) recruiting a large-scale network similar to the DMN (Frith &
Frith, 2003; Gallagher & Frith, 2003; Walter et al., 2004; Frith &
Frith, 2006a, 2006b; Carrington & Bailey, 2009). When it comes to
the perspective of functional coupling, recent studies reveal the
significance of functional connectivity between the DMN regions
in these interpersonal interactions (Li et al., 2014; Otti et al., 2010).
As a result, heightened functional connectivity between the DMN
regions in the present study may facilitate the implementations of
perspective taking, empathy and theory of mind, leading to better
performance in social interactions and perceived social support.

Correlations between perceived social support and functional
coupling within the DMN regions can be enlightened with regard
to the role of DMN regions in healthy social connections and
prosocial behavior. In fact, a series of studies confirm the involve-
ment of DMN regions in healthy social connections and prosocial
behavior. A structural MRI (magnetic resonance imaging) study
observes a negative correlation between loneliness and gray
matter volume in the left posterior superior temporal sulcus,
implying the critical role of STS in perception of social stimuli
(Kanai et al., 2012). And gray matter volume of the middle
temporal gyrus and posterior PCC correlate with online social
network size (Kanai et al., 2011) and perceived social support
respectively (Che et al., 2014). Moreover, neural regions involved
in processing social connection or social support are detected in
vmPFC and PCC (Younger, Aron, Parke, Chatterjee, & Mackey, 2010;
Eisenberger et al., 2011; Eisenberger, 2013a, 2013b). Besides, to

Fig. 2. Default mode component was identified in the independent component analysis.

Fig. 3. Scatter diagrams showed the correlations between spectral power of
different frequency bands within the DMN mask and the MSPSS scale scores.
(A)–(F) meant the six frequency bins between 0.01 and 0.24 Hz at 0.04 Hz intervals
respectively. Of note, the horizontal axes represented the standardized residual of
spectral power regressing out gender, age, general intelligence scores and struc-
tural variances in the post-PCC cluster. Statistical correlations between spectral
power within the DMN mask and the MSPSS scale scores were observed only in the
two low frequency bands (0.01–0.08 Hz).
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investigate the neural conditions of prosocial thoughts and beha-
vior, researchers show that activations in the mPFC recruited by
social exclusion and empathy can predict prosocial thoughts and
behavior (Mathur, Harada, Lipke, & Chiao, 2010; Masten, Morelli, &
Eisenberger, 2011). As a result, increased functional connectivity
within the DMN regions in participants may suggest sound social
connections and relatively strong intention to help others, linking
to high level of perceived social support.

As is shown in seed-based functional connectivity, key compo-
nents of the default network are involved in the self-report of
available social support by functionally linking with each other.
Furthermore, another piece of evidence supports this argument
with the examination of the low-frequency fluctuations of the
default network. As expected, low-frequency oscillations (0.01–
0.08 Hz) of the DMN positively correlate with perceived social
support (Fig. 3). Generally speaking, low-frequency fluctuations
contribute to temporal synchronicity or functional connectivity
among functionally related regions of the brain (Cordes et al.,
2001; Garrity et al., 2007; Cauda et al., 2009; Malinen et al., 2010).
As a result, heightened low-frequency oscillations observed in
high scorers of the MSPSS scale can be interpreted as enhanced
temporal coherence among brain areas of the DMN. In considera-
tion of the extensive functional activations and connectivity of the
DMN regions in interpersonal social interactions, it is reasonable
to assume that high level of perceived social support is correlated
with low-frequency oscillations of the DMN. Moreover, it is
interesting to find that low-frequency oscillations of the DMN
are associated with perceived social support with regard to altered
low-frequency fluctuations in mental disorders like schizophrenia
(Garrity et al., 2007) and the role of perceived social support in a
series of mental disorders.

In consideration of the multiple relations among perceived social
support, loneliness and functional activations and connectivity within
the DMN regions, it is rational to take loneliness into account with
regard to the observed correlation between perceived social support
and simultaneous activities within the DMN regions. In fact, loneliness
is demonstrated to link with perceived social support in a few studies
(Solomon et al., 1986; Jones & Moore, 1987; Cacioppo et al., 2006).
Moreover, altered structural variances, functional activations and
coupling within the DMN regions are repeatedly revealed in lonely
individuals (Cacioppo et al., 2009; Kanai et al., 2011; Powers et al.,
2011; Kanai et al., 2012) and autism spectrum disorders (ASD) (Frith,
2001; Cherkassky, Kana, Keller, & Just, 2006; Kennedy, Redcay, &
Courchesne, 2006; Kennedy & Courchesne, 2008; Schulte-Rüther et
al., 2011; Lynch et al., 2013). In line with previous studies, perceived
social support negatively correlates with loneliness in the present
study. However, correlations between perceived social support and
intrinsic connectivity within the default network are independent of
loneliness in main results by ruling out the UCLA Loneliness Scale
scores (Fig. 1). As a result, it is suggested that heightened synchronous
activities within the DMN regions may facilitate to interpersonal social
interactions, leading to high level of perceived social support and
decreased self-report of loneliness in consideration of the defects of
lonely individuals in interpersonal skills (Cacioppo et al., 2009; Kanai
et al., 2011; Powers et al., 2011; Kanai et al., 2012).

Recently, attentions paid to the role of the DMN suppression in
cognition and mental diseases increase. DMN suppression is
proved to support a series of goal-directed cognitive processes
(for a review see Anticevic et al. (2012)). For instance, the DMN–
FPCN (fronto-parietal control network) relationship is predictive of
intelligence (Cole et al., 2012). Moreover, lack of DMN suppression
is observed in several mental illness such as schizophrenia
(Whitfield-Gabrieli et al., 2009; Anticevic et al., 2011; Metzak et
al., 2011; Nejad et al., 2011; Dreher et al., 2012; Fatjó-Vilas et al.,
2012) and depression (Sheline et al., 2009; Hamilton et al., 2011).
In the present study, however, functional coupling within the TPN

regions and the anti-correlation between the DMN and the TPN
are not capable of predicting the self-report of perceived social
support in spite of the associations between perceived social
support and mental disorders. Anyway, it is interesting for future
researchers to investigate these relationships by designing proto-
cols that can represent the perceived social support.

To the best of our knowledge, this is the first study to reveal
that synchronicity within the DMN regions contributes to self-
report of available social support at resting state. Moreover, our
main findings are independent of different methods, structural
changes, and general cognitive performance. However, there are
few limitations that attention should be paid to in this study. For
example, we failed to administrate any measure of memory, so it is
difficult to rule out the possible effects of memory on reported
results as of the role of DMN activation in social working memory
(Meyer & Lieberman, 2012; Meyer, Spunt, Berkman, Taylor, &
Lieberman, 2012) and the proposed part of memory in empathy
(Beadle, Tranel, Cohen, & Duff, 2013) and prosocial behavior
(Gaesser, 2012). As a result, it is reasonable to investigate the
impacts of memory on the relations between perceived social
support and DMN activations and connectivity in future studies.
Moreover, new methods can be applied to construct an overall
connectivity of regions within the DMN and examine individual
differences in low fluctuation rates. This speaks to interpretation –

is it truly the connectivity between DMN regions which counts, or
is it just that participants use their DMNs differently – at least in a
less variable way.
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