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Abstract

Recovering directed pathways of information transfer between brain areas is an important issue in neuroscience and
helps to shed light on the brain function in several physiological and cognitive states. Granger causality (GC) anal-
ysis is a valuable tool to detect directed dynamical connectivity, and it is being increasingly used. Unfortunately, this
approach encounters some limitations in particularly when applied to neuroimaging datasets, often consisting in
short and noisy data and for which redundancy plays an important role. In this article, we address one of these lim-
itations, namely, the computational and conceptual problems arising when conditional GC, necessary to disambig-
uate direct and mediated influences, is used on short and noisy datasets of many variables, as it is typically the case
in some electroencephalography (EEG) protocols and in functional magnetic resonance imaging (fMRI). We show
that considering GC in the framework of information theory we can limit the conditioning to a limited number of
variables chosen as the most informative, obtaining more stable and reliable results both in EEG and fMRI data.
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Introduction

The dynamical interactions among brain regions are
being increasingly investigated, to obtain what has

been called the brain functional connectome. This integration
between distant brain areas can be detected with analysis of
functional and effective connectivity (EC). Functional connec-
tivity (FC) measures statistical dependencies of timeseries
corresponding to distinct units, while EC investigates the in-
fluence one neuronal system exerting over another, by means
of predictive models (Friston, 2011).

These models can either be physiologically motivated,
such as dynamical causal models (Friston, 2011), or purely
data driven such as in Granger causality (GC) analysis [for
a recent comparative review, see (Friston et al., 2012)]. In
the original definition of GC (Granger, 1969), if the prediction
error on one variable is significantly reduced by including an-
other variable in the autoregressive (AR) model, then this sec-
ond variable is said to Granger cause the first one. In the
presence of many variables, GC can be applied to individual
pairs, as it has been done in previous EEG and functional
magnetic resonance imaging (fMRI) studies (Goebel et al.,

2003; Kus et al., 2004). On the other hand, from the beginning,
it has been known that if two signals are influenced by a third
one that is not included in the regressions, this leads to spu-
rious causalities, so an extension to the multivariate case is
in order. The conditional Granger causality (CGC) analysis
(Geweke, 1984) is based on a straightforward expansion of
the AR model to a general case, including simultaneously
all measured variables. CGC has been proposed to correctly
estimate coupling in multivariate data sets (Barrett et al.,
2010; Chen et al., 2006; Deshpande et al., 2008; Liao et al.,
2010; Zhou et al., 2008). Sometimes though, a fully multivar-
iate approach can result in problems that can be purely com-
putational (computation of a big number of coefficients and
inversion of large matrices), but even conceptual: underesti-
mation of causalities can arise in presence of redundancy
(Marinazzo et al., 2010), due not only to high-density datasets
but even inherent to the human brain itself (Price and Friston,
2002).

When dealing with fMRI datasets, the issue of grouping-
correlated variables is particularly challenging, and it has
been addressed so far using a principal component analysis
(Zhou et al., 2008) or independent component analysis (Liao
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et al., 2010), to project data into a lower-dimensional sub-
space. However, the quantitative dimensionality in condi-
tional variables has not yet been considered.

To cope with redundancy and dimensionality curse in
evaluating multivariate GC, it has recently been proposed
(Marinazzo et al., 2012) that conditioning on a small number
of variables, chosen as the most informative ones for each
given candidate driver, can be enough to recover a network
eliminating spurious influences, in particular when the con-
nectivity pattern is sparse. We refer to this approach as the
partially conditioned GC (PCGC).

The purpose of this study was to show the applicability
and usefulness of this method, using it on a dynamical
model implemented on the human connectome structural
connectivity matrix and then on publicly available EEG and
resting-state fMRI data.

Materials and Methods

Partially conditioned GC

It has been recently proved that measures based on transfer
entropy provide an elegant and convenient framework to in-
vestigate multivariate information transfer (Faes et al., 2011;
Runge et al., 2012). PCGC was first proposed (by Marinazzo
et al., 2012) as a technique able to compute GC conditioned to
a limited number of variables in the framework of the infor-
mation theory. The idea is that conditioning on a small num-
ber of the most informative variables for the candidate driver
variable is sufficient to remove indirect interactions especially
for sparse connectivity patterns. This approach has general
validity, but the computation of the information from the co-
variance matrix is especially convenient in a framework in
which GC and transfer entropy are equivalent (Barnett
et al., 2009; Hlavácková-Schindler, 2011). Here we briefly re-
port the foundations of the approach, referring the reader to
the above-cited article for a complete description.

Considering n covariance stationary variables fxa(t)ga = 1, ���, n,
the state vectors are denoted: Xa(t) = [xa(t� q), � � � , xa(t� 1)], q
being the model order. Let e(xajY) be the mean squared error
prediction of xa on the basis of the vector Y. We can define
the PCGC index from a variable b to another one a as follows:

PCGCnd
(b/a) = log

e(xajZ)

e(xajZ [ Xb)
(1)

where Z = fXi1 , � � � , Xind
g is a set of the nd variables, in X/Xb,

most informative for Xb. In other words, Z maximizes the mu-
tual information IfXb, Zg among all the subsets Z of nd vari-
ables. This index will thus depend on nd, but for a simpler
notation, we will drop the subscript from the notation from
now on. Moreover, instead of searching among all the subsets
of nd variables, we adopt the following approximate strategy.
First, the mutual information of the driver variable, and each
of the other variables, is estimated, to choose the first variable
of the subset. The second variable of the subsets is selected
among the remaining ones, as those that, jointly with the pre-
viously chosen variable, maximize the mutual information
with the driver variable. Then, one keeps adding the rest of
the variables by iterating this procedure. Calling Zk�1 the se-
lected set of k�1 variables, the set Zk is obtained adding to
Zk�1 the variable, among the remaining ones, with a greatest in-
formation gain. This is repeated until nd variables are selected.

If we assume that the data are gaussianly distributed, the
mutual information can be computed from the covariance
matrix (Barnett et al., 2009). In this study, we have adopted
this strategy, confident that the loss of accuracy due to the
nonfulfillment of the exact gaussianity of the data is negligi-
ble when compared with the gain in accuracy provided by
the partial conditioning. Further, it has been suggested (Hart-
man et al., 2011; Hlinka et al., 2011) that for resting-state fMRI
data, which in our opinion will be the most frequent target of
the proposed approach, the non-Gaussian contributions are
almost negligible.

In practice, nd has to be chosen empirically by exploring the
curve of the residual information gain (even on a smaller per-
centage of the dataset) when an additional variable is used
for conditioning (added to the set Z) and deciding when the
remaining information due to additional variables can be
neglected. More automated algorithms to detect the inflection
point of the curve or the crossing of a given threshold can also
be explored.

The model order for PCGC analysis can be chosen, as for
standard pairwise GC/CGC analysis by standard methods
such as the Akaike information criterion, the Bayesian infor-
mation criterion, or leave-one-out cross-validation.

Simulated data

The approach is first tested on a dataset simulated through
a recently launched platform, The Virtual Brain (Ritter et al.,
2013; Sanz Leon et al., 2013). The embedded 74-node struc-
tural connectivity matrix provided the system architecture.
At each node, the activity of a population of neurons was sim-
ulated with the default model of a 2D oscillator (Stefanescu
and Jirsa, 2008), able to preserve the mathematical form of sin-
gle-neuron equations. The equations governing the dynamics of
the two-state variables are the following:

_V = s(W�V3þ 3V2þ Iextþ I)

_W = � (aþ bVþ cV2�W)=s (2)

The parameters were a = 2, b =� 10, c = 0, Iext = 0, and s = 1.0,
resulting in a limit cycle in the phase plane. For the coupling,
a linear function was used, rescaling the connection strength
of a factor 0.06 and using 3 mm/ms as conduction speed. The
equations were integrated according to the Heun determinis-
tic scheme with a time step of 0.012 ms. The timeseries were
then downsampled to 256 Hz. For the comparative analysis
taking into account the length of the time series, 5 sections
of 4 seconds and 10 sections of 2 seconds each were used.
The order q of the model was chosen as 6 using the Bayesian
information criterion. The timeseries simulated by equation
(2) are nonlinear and not gaussianly distributed. To see to
which extent this approximation in our methodology affected
the results, we fitted the dataset with a linear model of order 6
and then used the coefficients and the noise covariance matrix
to generate a linear version of it.

Resting-state fMRI data

The resting-state fMRI datasets used in this study have
been publicly released under the 1000 Functional Connec-
tomes Project (http://fcon_1000.projects.nitrc.org, accessed
March 2012). The first dataset is the enhanced Nathan Kline
Institute-Rockland sample, containing two resting-state
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fMRI sessions spaced of 1 week, from 24 participants, with
three different TRs (multiband EPI sequence: TR = 0.645 sec-
onds and TR = 1.4 seconds; a conventional EPI sequence:
TR = 2.5 seconds). For a complete description, the reader is re-
ferred to the Website (http://fcon_1000.projects.nitrc.org/
indi/pro/eNKI_RS_TRT).

Data preprocessing

The resting-state images were preprocessed using SPM8:
slice timing (only for dataset with 2.5s), realigning, and nor-
malization into the Montreal Neurological Institute template,
followed by resampling to 3-mm isotropic voxels. The sub-
jects for which head motion exceeded 1.5 mm or 1.5� were ex-
cluded from the study. Several procedures were used to
remove possible spurious variances from the data through
linear regression. These were (1) six head motion parameters
obtained in the realigning step, (2) signal from a region in ce-
rebrospinal fluid, (3) signal from a region centered in the
white matter, and (4) global signal averaged over the whole
brain. The BOLD time series were linearly detrended. Addi-
tionally, the hemodynamic response function was decon-
volved from the BOLD time series by a blind deconvolution
method (Wu et al., 2013). Finally, for the main application,
the standard functional images were segmented into 90 re-
gions of interest (ROIs) using an automated anatomical label-
ing template. We also used two more coarse templates, made
of 7 and 17 regions, to investigate the effect of the number of
variables on the different GC measures, without losing the
spatial diversity.

Electroencephalographic recordings

The EEG dataset used in this study is the taken from
the public repository Physionet (Goldberger et al., 2000)
(www.physionet.org/pn4/eegmmidb/, accessed January
2013). The EEG was recorded by (Schalk et al., 2004) with a
BCI2000 system with 64 scalp electrodes at a sampling rate
of 160 Hz. To allow for a statistical validation, the data were
divided into 44 segments of 5 seconds. The model order q
was chosen equal to 6 by means of the Bayesian information
criterion.

Results

Simulated neural activity

Pairwise GC, fully conditioned GC, and PCGC were used
to recover the structure of the simulated dynamical network.
The performances of the three approaches were assessed by
means of the receiver–operator-characteristic curves. Taking
as the ground truth, the structural matrix, the sensitivity,
and specificity were calculated by the GC value at various
threshold settings. As reported in Fig. 1C, when we use a
series of 1024 points, the full and the partial conditioning
gives similar results, both better than the pairwise analysis.
However, with shorter series (512 points), a decay of the per-
formance of the fully conditioned approach due to overfitting
is observed, while PCGC still gives satisfactory results
(Fig. 1A).

The number of variables used for partial conditioning is
nd = 10. The choice of this value is justified by plotting the mu-
tual information gain when the variable nd is added to the set
Z (Fig. 1E).

FIG. 1. Comparison on the performances of pairwise
Granger causality (GC), conditional Granger causality
(CGC), and partially conditioned GC (PCGC) on a dynamical
model of a neural population simulated on the connectome
structure. (A, B) time series of 512 time points; (C, D) time se-
ries of 1024 time points. (A, C) linearized data. (B, D) Nonlin-
ear data. E: Mutual information gain when an additional
variable is used for conditioning, for the simulated dynamical
network, with 512 and 1024 points, for the nonlinear and the
linearized data.

Table 1. Execution Times (in Seconds) for the Fully

Conditioned Granger Causality, the Partially

Conditioned Granger Causality (with nd = 10),
and the Computation of the Conditioning Subset Z

512 points 1024 points

CGC 76.1 118.1
PCGC 5.5 9.0
Z 11.8 18.3

CGC, conditional Granger causality; PCGC, partially conditioned
GC.
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We replicated the analysis on the linear, gaussianly distrib-
uted version of this dataset, obtaining virtually undistinguish-
able performances and information gain curves (Fig. 1B, D).
This supports the hypothesis that the approximation introduced
by the nongaussianity of the data is not prejudicial for the suc-
cessful application of the proposed algorithm. Nonetheless this
does not imply that a general estimator, not based on the Gaus-
sian approximation, would not perform better on the same data.

The execution times for the algorithm are reported in
Table 1.

Resting-state fMRI data

Also in this case, the additional mutual information gain
when successive variables are added to the partially condi-
tioning set Z is calculated and used to select nd. This quantity
is plotted both averaged over all the 90 regions (Fig. 2, left),
and for a single representative region (PCG.L; Fig. 2, right).
In both cases, a knee of the curve is observed for nd = 10.
The curve corresponding to the shortest TR is the highest
one, confirming that a faster sampling rate is indeed neces-
sary to gather additional information on the dynamics.
When looking where the 10 most informative variables for
each region are located, one can observe that they can be
found not only in proximity of the region, but as well in the
distant brain areas. Considering the left posterior cingulate
gyrus (PCG.L), one of the key regions of the network respon-

sible for integration, the pattern of the regions, which are
most informative for it, is distributed across the brain, involv-
ing in particular the regions involved in the default-mode net-
work (right posterior cingulate gyrus, left angular gyrus, left
superior frontal gyrus medial orbital, left precuneus, right
paracentral lobule, left superior frontal gyrus dorsolateral,
left gyrus rectus, right middle frontal gyrus, and left superior
parietal gyrus). This pattern is remarkably reproduced across
sections and TRs. These results are reported in Fig. 3, and sim-
ilarly distributed patterns are obtained considering other areas.

Following the idea that relevant information for each target
variable is collected across the resting-state functional net-
works, one can think of grouping the brain regions in com-
munities according to their informative contribution to the
future of each target variable. A symmetric matrix M was
built whose entry (i, j) indicated how many times region i
was chosen as one of the 10 most informative for j or vice
versa. The Louvain algorithm (Blondel et al., 2008) was then
employed to detect the community structure of M as the solu-
tion producing the highest modularity. In this case, the brain
network was separated into 5 modules for TR = 1.4s fMRI
data (Fig. 4). Module I (yellow) included the bilateral ventro-
medial prefrontal cortices, bilateral dorsal lateral frontal cor-
tices, and medial orbital prefrontal cortex, which are partly
specialized for anterior default-mode function. Module II
(violet) mostly included the bilateral precentral gyrus, post-
central gyrus, and supplementary motor area, which
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FIG. 2. Mutual information
gain when an additional
variable is used for
conditioning for the resting-
state functional magnetic
resonance imaging data with
different TRs, averaged on all
the regions as target (left) and
when the target is PCG.L
(right).

FIG. 3. The first 10 most
informative regions for the
future of PCG.L, with
different TRs and across
sessions. The size of the
sphere is proportional to the
frequency with which the
region was chosen as one of
the first 10 most informative.
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correspond to sensory motor function. Module III (blue)
mostly included the bilateral posterior parietal cortices and
the precuneus and posterior cingulate cortex, which are re-
sponsible for posterior default-mode function. Module IV
(green) included the occipital cortices that are primarily
specialized for visual processing. Moreover, mesial temporal
regions, such as the bilateral amygdala, hippocampus, para-

hippocampal gyrus, and pole of temporal lobe, subcortical re-
gions, and neocortical temporal cortices were found in
module IV (cyan). Mesial temporal regions and subcortical re-
gions are in a separate module, as neocortical temporal corti-
ces, both TR = 0.645 seconds and TR = 2.5 seconds fMRI data.

At this point, it is interesting to see how the different mea-
sures of GC are affected by the size of the dataset. We com-
puted PCGC, CGC, and pairwise GC for three different
parcellations of the cortex, in 7, 17, and 90 regions (Fig. 5).
When the number of regions is low, there is high correlation
of the values of PCGC (nd = 2 was chosen in this case) with
both pairwise GC (r = 0.90) and CGC (r = 0.89). When the re-
gions are increased to 17, the correlation with pairwise CG
drops to 0.35 while the one with CGC stays high (0.79).
With 90 regions, the correlation with pairwise GC is 0.25,
and the one with PCGC is 0.79. Despite the still high correla-
tion, the slope of the fitting line for PCGC versus CGC is
lower, confirming that the redundancy has the effect of reduc-
ing the detection of Granger-causal influences when a fully
conditioned approach is employed (Marinazzo et al., 2010).

When we compare the connectivity matrix for CGC and
PCGC for the 90 regions, after family-wise error correction
for multiple comparisons, we see that the PCGC matrix is
more structured, still remaining sparse.

EEG data

Also for EEG data, the curve of the information gain de-
cays rapidly with the number of variables used for condi-
tioning (Fig. 6B). Contrarily to what happens in fMRI data,
here the neighboring electrodes are most often chosen as
the most informative for each target, though the extension
of this neighborhood is different across the scalp (Fig. 6C).
Also in this case, the connectivity matrix is sparse (Fig.
6A), and PCGC and CGC values are highly correlated,
r = 0.88 (Fig. 6B, inset).

Discussion and Conclusions

This study has proposed a solution to one of the problems
inherent to the application of GC to neuroimaging datasets,
showing that partial conditioning on a small number of the
most informative variables for the driver node leads to results
very close to the fully multivariate analysis and even better in
case of the small number of samples, especially when the pat-
tern of causalities is sparse. Anatomical studies have shown
that the axonal connectivity of the cortex is generally sparse
(Hagmann et al., 2008), and FC studies have revealed the
highly clustered and redundant structure of the brain as a dy-
namical system. The approach proposed here is indeed opti-
mized, taking into account these characteristics.

Another challenge for GC application to fMRI data is
downsampling and hemodynamic confound. The downsam-
pling is so far an unavoidable flaw in fMRI, and it has been
confirmed here that a significant amount of information on
the future of each target variable is lost when the TR is
long. The hemodynamic response function varies across dif-
ferent brain regions, sessions, and subjects. Here a blind
deconvolution method for resting-state fMRI data (Wu
et al., 2013) was applied, allowing the detection the EC net-
work at a neural level (Matlab code is available in http://
users.ugent.be/*dmarinaz/code.html).

FIG. 4. Division in communities of mutually informative re-
gions for different TRs.
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Modularity is an important organizational principle of
complex brain networks (Bullmore and Sporns, 2009). Brain
communities are sets of regions that are highly connected
among each other while connections between members of dif-
ferent communities are less dense. Investigating modularity

hence might be helpful to uncover the functional segregation
of neural information (Sporns, 2013). Recently, convergence
and divergence modular structures have been documented
in human anatomical (Gong et al., 2009; Hagmann et al.,
2008) and functional connectomes (He et al., 2009; Meunier

FIG. 5. Top: the values of
CGC (red) and pairwise GC
(black) are plotted against the
values of PCGC for different
parcellations of the brain. (A)
Yeo 7 template. (B) Yeo 17
template. (C) AAL 90
template. Bottom:
connectivity matrices between
the 90 regions of the AAL
template obtained by CGC (D)
and PCGC (E), after family-
wise error (FWE) correction,
p < 0.01.

FIG. 6. (A) Connectivity matrix for PCGC, FWE corrected, p < 0.01, for the electroencephalogram dataset. (B) Mutual informa-
tion gain when an additional variable is used for conditioning, averaged for all the targets. Inset: plot of PCGC versus CGC. (C)
The relative frequency with which other electrodes were chosen among the first 10 most informative ones for each electrode.

CONDITIONING GC TO THE MOST INFORMATIVE VARIABLES 299



et al., 2009). In those studies, modules related to the primary
brain functions, such as visual, auditory, sensorimotor, sub-
cortical, and the default-mode systems, were regularly
detected. In this study, we also found a modular organiza-
tion, which mainly involved the visual, auditory, limbic,
and subcortical systems, separated the anterior default-
mode network. This default-mode subsystem is consistent
with our previous findings (Liao et al., 2011), thus providing
an evidence for functional anatomic fractionation of the
brain’s default-mode network (Andrews-Hanna et al., 2010;
Andrews-Hanna, 2011). Here we propose a modular struc-
ture based on the informational content, providing new in-
sights into the understanding of functional segregation of
brain networks at rest.

This study has reported results for 90 ROIs obtained by
means of an anatomical template; for finer resolutions, with
templates with a higher number of regions, or even at a sin-
gle-voxel level, further modifications and improvement to
this technique could be in order.

When electroencephalographic recordings are concerned, the
idea that scalp conductivity could play a prominent role as a
common source of information seems confirmed in this case.

This approach is based on the equivalence of linear GC and
transfer entropy for gaussianly distributed variables. For rest-
ing-state fMRI, which we believe that it will be the main target
of this approach, this equivalence can be close to be fulfilled.
Anyway, also for another type of non-Gaussian data, this ap-
proach remains valid: the loss of accuracy due to the only
approximate equivalence is negligible compared to the concep-
tual and computational improvements that make the applica-
tion of GC possible also in presence of strong redundancy.
Nonetheless, future work will be required to make this ap-
proach exact for all kind of data distribution and to use the
exact formulation for the calculation of the transfer entropy.
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