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A B S T R A C T   

Although many studies have explored the neural mechanism of the feeling of stress, to date, no effort has been 
made to establish a model capable of predicting the feeling of stress at the individual level using the resting-state 
functional connectome. Although individuals may be confronted with multidimensional stressors during the 
coronavirus disease 2019 (COVID-19) pandemic, their appraisal of the impact and severity of these events might 
vary. In this study, connectome-based predictive modeling (CPM) with leave-one-out cross-validation was con
ducted to predict individual perceived stress (PS) from whole-brain functional connectivity data from 817 
participants. The results showed that the feeling of stress could be predicted by the interaction between the 
default model network and salience network, which are involved in emotion regulation and salience attribution, 
respectively. Key nodes that contributed to the prediction model comprised regions mainly located in the limbic 
systems and temporal lobe. Critically, the CPM model of PS based on regular days can be generalized to predict 
individual PS levels during the COVID-19 pandemic, which is a multidimensional, uncontrollable stressful sit
uation. The stability of the results was demonstrated by two independent datasets. The present work not only 
expands existing knowledge regarding the neural mechanism of PS but also may help identify high-risk in
dividuals in healthy populations.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) has presented humanity with 
one of the greatest health and economic crises of the 21st century. It is 
characterized by enormous uncertainty, life-threatening conditions, and 
intense loss; therefore, it has become an uncontrollable stressor for many 
individuals (Gruber et al., 2020). Although individuals may be con
fronted with this multidimensional stressor, their appraisal of the impact 
and severity of these events might vary. The impact of objectively 
stressful events is determined by their perception of stressfulness (Cohen 
et al., 1983). The subjective measure of event-specific stress levels can 
be defined with perceived stress (PS), which refers to the degree to 
which situations in one’s life are appraised as stressful, unpredictable 
and uncontrollable (Cohen et al., 1983; Phillips, 2012). High PS in
creases the risk of physical problems, such as cardiovascular disease, 

hypertension, and stroke (Aggarwal et al., 2014; Chrousos, 2009; Ost
wald et al., 2009), and some psychiatric disorders such as depression, 
anxiety and addiction disorder (Andrews and Wilding, 2004; Baghurst 
and Kelley, 2014; Chrousos, 2000; Faravelli et al., 2012; Gress-Smith 
et al., 2015; Johnson et al., 1992). Considering that stress levels have 
increased dramatically during COVID-19 (Brooks et al., 2020), it is 
valuable to identify neurobiological markers of PS that can predict the 
feeling of stress at the individual level. 

Early studies on the neural mechanism of PS identified the involve
ment of localized brain regions such as the limbic systems and prefrontal 
cortex (Hermans et al., 2014; McEwen and Morrison, 2013; Menon, 
2011; Pruessner et al., 2008; Seo et al., 2011; Sinha et al., 2004; Van 
Oort et al., 2017). Many studies have demonstrated that some limbic 
regions belonging to the default model network (DMN), such as the 
hippocampus and parahippocampus (PHG), are involved in stress 
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processes (Albert et al., 2015; Boehringer et al., 2015; Chang and Yu, 
2019; Li et al., 2014; McEwen and Gianaros, 2011; Ploghaus et al., 2001; 
Sinha et al., 2004). Some regions of the salience network (SN), such as 
the amygdala, insula, and thalamus, that engage in detecting salient 
internal and external events are also important in stress-related pro
cesses (Dedovic et al., 2014; Hermans et al., 2014; Li et al., 2014; Seo 
et al., 2011; Sinha et al., 2004; Wang et al., 2005). The prefrontal cortex, 
which is associated with cognitive and emotion regulation processes, are 
also associated with stress processes (Li et al., 2014; Maron-Katz et al., 
2016; Wang et al., 2019; Wu et al., 2018). In addition to localizing stress 
to some specific regions, some work has tried to identify the functional 
brain connectivity of stress with task-based and resting-stating data 
(Hermans et al., 2011, 2014; Quaedflieg et al., 2015a,b; Vaisvaser et al., 
2013, 2016; Van Oort et al., 2017; Zhang et al., 2019, 2020). One 
meta-analysis indicated three networks, i.e., the SN, the DMN and the 
central executive network (CEN), that are involved in experimentally 
induced stress responses (Van Oort et al., 2017). In sum, previous studies 
showed that the stress response was associated with alterations of 
multiple brain regions organized into functional networks. 

Although previous neuropsychological studies have advanced our 
understanding of the neural basis of stress, to the best of our knowledge, 
no study has used resting-state functional connectivity (rsFC) to predict 
PS at the individual level for healthy people. Intrinsic rsFCs are closely 
associated with underlying anatomical connections (Greicius et al., 
2009) and can be better used to explore relatively stable personal 
characteristics and their individual differences (Biswal et al., 1995; 
Crossley et al., 2013; Finn et al., 2015; Fornito et al., 2012). One 
advantage of resting-state data over task-based data is that they are 
much easier to record and are not influenced by task difficulty (Kable 
and Levy, 2015; Nash et al., 2015). Considering that a secondary crisis 
after the outbreak of COVID-19 is mental health problems (Gruber et al., 
2020), models that can be used to predict high PS at the individual level 
may help identify high-risk individuals in healthy populations. These 
models may provide some insight for clinical diagnosis in the future. 
Moreover, predicting PS during the COVID-19 pandemic with 
whole-brain rsFC would provide some insight into the neural mecha
nism of PS (Cole et al., 2014; Krienen et al., 2014; Petersen and Sporns, 
2015) because the stress process is known to induce large-scale network 
reorganization (Hermans et al., 2014). Most of the previous studies of 
the neural mechanisms of PS focused on some localized brain regions or 
specific functional connectivity with stress processes and had inconsis
tent results because of differences in experimental design and contrast 
(Van Oort et al., 2017). Network-based approaches provide whole-brain 
rsFC in individual participants and are particularly well suited to address 
the complex interplay of multiple neurocognitive processes in perceived 
stress. 

Recently, a novel approach—connectome-based predictive modeling 
(CPM)—has been used to explore the association between functional 
connectivity in the brain and meaningful psychological traits. CPM was 
employed to identify networks consisting of the functional connectivity 
most associated with observed trait scores and uses these networks to 
generate models that predict trait scores in novel individuals (Beaty 
et al., 2018; Fountain-Zaragoza et al., 2019; Hsu et al., 2018; Lu et al., 
2019; Rosenberg et al., 2016, 2020). CPM has been employed to predict 
attention (Rosenberg et al., 2016, 2020; Yoo et al., 2018), personality 
traits (Hsu et al., 2018), and creative ability (Beaty et al., 2018). In this 
study, we implemented a CPM to test whether a whole-brain con
nectome based on rsFC can reliably predict PS in novel participants 
within this dataset. Moreover, we also examined whether the psCPM 
built on regular days can predict individual PS levels during the 
COVID-19 pandemic, a multidimensional stressor situation. Because 
perceived stress is commonly considered a personality style (Cohen 
et al., 1983; Phillips, 2012), individuals with a high level of PS may tend 
to feel more stressed during the COVID-19 pandemic than others. We 
hypothesized that psCPM based on regular days tracked the degree of 
perceived stress in the full spectrum. Although stress levels during the 

COVID-19 pandemic were shown to be significantly elevated, brain 
networks that register stress levels remained the same networks. 
Therefore, the psCPM built with regular days can predict individuals’ 
stress levels during the COVID-19 pandemic. To assess the predictive 
power of this neural model, external validation analyses were conducted 
with two independent datasets. 

2. Methods 

2.1. Participants 

Three datasets that included a total of 817 participants were used in 
this study. All participants were recruited from Southwest University in 
Chongqing, China. Dataset 1 was used as the discovery dataset with 673 
participants (491 females) from our Gene-Brain-Behavior (GBB) project, 
which was conducted from 2015 to 2017 and aimed to explore the 
neural and genetic basis underlying complex human behavior and 
mental health. The recruitment program and exclusion criteria are 
detailed in our previous publications (Liu et al., 2017). All the partici
pants completed brain imaging scanning from September to December 
2016. A total of 673 participants from the GBB project who completed 
the PS scale in 2016 were used in the following data analysis. Dataset 2 
consisted of 87 participants (69 females), and dataset 3 consisted of 57 
participants (47 females). These two datasets were used as the external 
validation dataset. All the participants in dataset 2 and dataset 3 
completed an online questionnaire survey from February 21 to 28, 2020, 
and brain imaging scanning from June to September 2019 and March 
2018, respectively. All the participants were right-handed and had no 
history of neurological or psychiatric disorders. This study was approved 
by the Southwest University Brain Imaging Center Institutional Review 
Board, and written informed consent was obtained from all participants. 

2.2. Perceived stress measurements 

The participants’ PS levels were measured with the PS scale, which 
was designed to measure the extent to which situations in one’s life 
could be appraised as stressful during the past month (e.g., ‘In the last 
month, how often have you felt nervous and ‘stressed’?) (Cohen et al., 
1983). This inventory consisted of 14 items, and participants were asked 
to rate their opinion on each item on a 5-point scale from “never” (0) to 
“very often” (4). High scores indicated elevations in perceived stress. 
Previous studies have shown that the PS scale has high reliability and 
validity and is a sensitive measure of subjective stress levels in clinical 
and nonclinical samples (Cohen et al., 1983, 1993; Ng, 2013). In this 
study, the PS scale showed high internal consistency, α = 0.844. 

2.3. fMRI data acquisition and analysis 

2.3.1. Image protocols and preprocessing 
Resting-state fMRI scanning of dataset 1 and dataset 3 was performed 

on a 3T Trio scanner (Siemens Medical Systems, Erlangen, Germany) at 
Southwest University Brain Imaging Center. During scanning, partici
pants were asked to close their eyes and remain awake. A total of 242 vol 
lasting for 8 min were acquired using a gradient echo-planar imaging 
(EPI) sequence with the following parameters: echo time [TE] = 30 ms, 
repetition time [TR] = 2000 ms, slices = 32, thickness = 3 mm, matrix 
size = 64 × 64, flip angle = 90◦, field of view [FOV] = 220 × 220 mm2, 
and voxel size = 3.4 × 3.4 × 4 mm3. 

Brain imaging data of dataset 2 were collected on a 3T Prisma 
Siemens Trio MRI scanner (Siemens Medical Systems, Erlangen, Ger
many) using a 32-channel brain coil at Southwest University Brain Im
aging Center. Resting-state scanning contained 240 vol, and data were 
obtained with a gradient EPI sequence: TR = 2000 ms, TE = 30 ms, FOV 
= 224 × 224, FA = 90◦, slices = 62, thickness = 2 mm, slice gap = 0.3 
mm, and voxel size = 2 × 2 × 2 mm3. All participants were asked to close 
their eyes and rest but not to fall asleep. 
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The resting-state fMRI data were preprocessed using the Data Pro
cessing & Analysis of Brain Imaging toolbox (DPABI; Version 3.1) (Yan 
et al., 2016). The first 10 functional volumes were discarded to decrease 
signal instability. The remaining volumes of each participant underwent 
subsequent preprocessing, including slice timing and realignment. Data 
from participants whose mean framewise displacement was greater than 
0.2 mm were excluded from further processing (Jenkinson et al., 2002). 
The functional volumes were then spatially normalized to standard 
Montreal Neurological Institute (MNI) space with a 3 × 3 × 3 mm3 voxel 
resolution. Afterwards, the linear trends of time courses were removed, 
and bandpass filtering (0.01–0.1 Hz) was applied to reduce 
low-frequency drift and high-frequency physiological noise. Subse
quently, the images were spatially smoothed with a Gaussian filter to 
decrease spatial noise (4 mm full width at half maximum in each di
rection). Finally, common nuisances were regressed out, including sig
nals related to the whole brain signal, ventricular signal, white matter 
signal, and any effects of head motion using the 24 head motion pa
rameters procedure (6 motion parameters, 6 temporal derivatives, and 
their squares) (Friston et al., 1996). 

2.3.2. Functional network construction 
After data preprocessing, the whole-brain rsFC matrix was con

structed with the Human Brainnetome Atlas, which consisted of 210 
cortical and 36 subcortical ROIs. This atlas provides a new framework 
for connectome analysis that integrates multimodal information and 
overcomes several drawbacks of previous parcellation schemes (Fan 
et al., 2016). For each participant, the blood oxygenation 
level-dependent time course of each node was extracted by taking the 
mean across voxels, and a 246 × 246 correlation matrix was calculated 
between time courses of node pairs with Pearson correlation followed by 
Fisher’s z transformation. Thus, each connection (or ‘edge’) in the ma
trix represents the FC strength between two nodes. 

2.3.3. Connectome-based predictive modeling 
We used CPM, a recently developed technique, to predict in

dividuals’ PS scores based on whole-brain rsFC (Finn et al., 2015; 
Rosenberg et al., 2016; Shen et al., 2017) in dataset 1 (discovery dataset) 
composed of 673 participants. A detailed protocol and scripts of CPM are 
available in Shen et al. (2017). First, to obtain networks used in the 
prediction, a Pearson correlation was made between individuals’ PS 
scores and every edge in the connectivity matrix of each participant. A 
commonly used threshold (p < 0.01) in the CPM protocol (Jangraw 
et al., 2018; Rosenberg et al., 2016; Shen et al., 2017) was applied to 
remove most weak connections and retain significantly correlated edges. 
Edges that were significantly positively related to PS scores made up the 
positive prediction network, and edges that were significantly nega
tively related to PS scores made up the negative prediction network. We 
then calculated each participant’s positive and negative network 
strength (a single summary statistic) by summing the edge strength 
within the positive network and the negative network separately. For 
each participant, we also computed combined network strengths by 
summing the edges from both the positive and negative networks. 
Summing the strength of connections within a given network for each 
participant provides a quantitative summary statistic of the overall 
strength of functional connectivity that has been identified to correlate 
with the outcome measure of interest (i.e., PS scores). 

Next, a predictive model was built that fit a linear regression between 
each participant’s network strengths and the observed PS scores (Beaty 
et al., 2018; Finn et al., 2015; Rosenberg et al., 2016). The model was 
then applied to new participants in a leave-one-out cross validation 
(LOOCV) procedure. Briefly, the predictive model was trained on N-1 
participants’ connectivity matrices and PS scores and subsequently 
tested on the left-out participant. After all the LOOCV folds were 
completed, we obtained the predicted scores of each participant. 

The predictive power of the model was assessed by the magnitude 
and statistical significance of Pearson’s correlation between actual and 

predicted behavioral values. If actual and predicted PS scores were 
significantly positively related, this would suggest that the model was 
successful in its prediction. Permutation testing was used to assess the 
significance of the prediction results. Specifically, we randomly shuffled 
the label between observed PS scores and rsFC matrices each time and 
reran the above LOOCV prediction procedure. The 1000 Pearson cor
relations between observed and predicted scores composed null distri
butions of r values. The number of null r values was greater than or equal 
to the observed r value plus one and then divided by 1001, providing an 
estimated p value. 

2.3.4. Control analyses 
To avoid potential confounding effects of sex, age and head move

ments in prediction, control analyses were conducted in addition to the 
main, non-controlled results. We built new predictive networks that 
uniquely predicted PS scores when controlling for these covariates. 

2.3.5. External generalizability 
To test the external validity of the psCPM identified in the discovery 

dataset, we tested whether these edges were significantly predictive of 
PS in two independent datasets. Specifically, we applied the positive and 
negative PS brain networks and the model parameters derived from the 
discovery dataset to the external validation datasets. Model performance 
using external datasets was assessed by correlating the predicted and 
actual PS scores. 

3. Results 

3.1. Behavioral results 

Based on case data from the National Healthy Commission of the 
People’s Republic of China (http://www.nhc.gov.cn/), the number of 
existing confirmed COVID-19 cases (58,016 cases) peaked on February 
17, 2020. The epidemic remained severe during our online question
naire collection period from February 21 to 28, 2020 (the number of 
existing confirmed cases ranged from 39,919 to 54,965). The mean and 
standard deviation of the PS scores in the three datasets are described in 
Table 1. The PS scores reported during the COVID-19 pandemic period 
(Feb 2020) for datasets 2 and 3 were significantly larger than the PS 
scores reported in 2016 for Dataset 1, t (815) = − 4.837, p = 0.000, 
Hedges’ g = 0.4437. Because participants in dataset 3 had PS scores on 
regular days and during the COVID-19 pandemic, we also performed a 
paired-sample t-test for the PS scores in this dataset. The results also 
showed that participants’ PS scores during the COVID-19 pandemic 
were also significantly higher than those on regular days, t (56) =
− 2.221, p = 0.030, Hedges’ g = 0.2971. Demographic information for all 
datasets is presented in Table 1. 

3.2. CPM results 

3.2.1. Predicting individualized PS scores 
For predicting individual PS on regular days, the results showed that 

the positive model and negative model had significant predictive power 
for PS scores: positive network, r = 0.360, p < 0.001; negative network, 
r = 0.431, p < 0.001, Fig. 1A; combined network: r = 0.444, p < 0.001. 
Perm values were based on 1000 permutation tests. After controlling for 
head motion, age, and sex, all three networks still significantly predicted 

Table 1 
Demographic information.  

Data set Age (SD) PSS (SD) 

Dataset 1 19.46 (1.46) 25.32 (6.35) 
Dataset 2 19.38 (0.63) 28.97 (7.72) 
Dataset 3 18.58 (0.65) 27.09 (6.79) 

Abbreviations: PSS, Perceived Stress Score; SD, Standard Deviation. 
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PS scores: positive network: rpartial = 0.379, p < 0.001; negative network: 
rpartial = 0.451, p < 0.001; combined network: rpartial = 0.468, p < 0.001. 

We next assessed whether the networks that predicted PS on regular 
days in the discovery dataset generalized to two other datasets sepa
rately. Edges identified in the discovery dataset as significantly related 
to observed PS scores were extracted from dataset 2 and then the FC 
strength was directly input into the final CPM to obtain the predicted PS 
scores and to calculate its correlation with the actual scores. The results 
showed a significant prediction of PS scores for the negative network 
[rpartial = 0.336, p = 0.001, Fig. 1B] and combined network [rpartial =

0.271, p = 0.011] but not the positive network [r = 0.080, p = 0.462]. 
The validation analysis from dataset 3 showed the same results. The 
CPM built with negative network strength and combined network 

strength reliably predicted novel participants’ PS scores (negative 
network: rpartial = 0.309, p = 0.020, Fig. 1C; combined network: rpartial =

0.389, p = 0.003) but not the positive network (rpartial = 0.251, p =
0.060). Because we only found a successful prediction of PS during the 
COVID-19 pandemic using negative network strength, the following 
discussion focused on the connections within the negative network. The 
connections within the positive network are presented in the supple
mentary information (Supplementary Fig. 1 and Supplementary 
Table 1). 

3.2.2. Network anatomy 
For PS scores, the negative network (consisting of edges included in 

negative predictions in every iteration of the leave-one-out procedure) 

Fig. 1. (A) Scatter plots showing the correlation between the actual and predicted perceived stress scores (PSS) generated using CPM based on the negative networks 
in dataset 1. (B) and (C) The built predictive model of PSS generalized to the external validation datasets (dataset 2 and dataset 3) and showed a positive correlation 
between the actual PSSs and the predicted scores. 

Fig. 2. (A) The functional connectivity sets of the negative network that connected 246 nodes in the circle plot. (B) We mapped the functional connectivity of the 
negative network to the surface, and the node size represented the degree. (C) The 246 nodes are grouped into canonical functional networks, and the connection 
number between brain networks is shown in the matrix (larger spheres indicate more connections). 
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contained 103 edges (0.34% of all possible edges) (Fig. 2A). At a 
macroscale level, connections distributed in the temporal lobe, frontal 
lobe, parietal lobe, limbic systemand subcortical lobe made the greatest 
contribution to the prediction of individual differences in PS (Fig. 2A 
and B). The nodes with the highest degrees for the negative network 
included nodes that belong to the DMN (e.g., the parahippocampal 
gyrus, precuneus, and orbital gyrus) and salience network (e.g., the 
thalamus) (Fig. 2A and C, Table 2). 

4. Discussion 

The present study first used CPM to predict individual PS scores in 
novel healthy participants with whole-brain rsFC data. The results 
showed that inter-individual differences in PS were primarily predicted 
by rsFC located within and between the domain general large-scale 
network-DMN (e.g., the PHG, precuneus, and orbital gyrus) and SN (e. 
g., the thalamus), for which neural activity has been previously associ
ated with stress processing (Hermans et al., 2014; Van Oort et al., 2017). 
The external validity of the functional networks of PS was tested with 
two independent datasets. Critically, the results demonstrated successful 
generalizability of the psCPM based on regular days to a multidimen
sional stressor situation—the COVID-19 pandemic—even though the 
stress levels during the COVID-19 pandemic were significantly elevated; 
this finding suggests that psCPM tracked the degree of perceived stress 
in the full spectrum of stressful days. Taken together, this finding pro
vided the first evidence that the subjective feeling of stress across situ
ations can be reliably predicted from an individual’s unique rsFC profile. 

Our results showed that the greatest number of significantly corre
lated functional connections corresponded to the hubs of the DMN, such 
as the PHG, precuneus, and orbital gyrus (see Table 2). Previous studies 
have shown that DMN regional activity and connectivity between the 
DMN and other brain regions are associated with stress processes 
(Boehringer et al., 2015; Chang and Yu, 2019; Dedovic et al., 2014; 
Hermans et al., 2014; Koric et al., 2012; Lederbogen et al., 2011; Mar
on-Katz et al., 2016; Quaedflieg et al., 2015a,b; van Oort et al., 2017). 
Abnormal DMN connectivity was associated with stress-related 

psychopathologies, such as posttraumatic stress disorder (Bluhm et al., 
2009; Rabinak et al., 2011) and depression (Greicius et al., 2007). The 
DMN is associated with self-referential processing and emotion regula
tion (Andrews-Hanna et al., 2014; Buckner et al., 2008; Leech and 
Sharp, 2014). Connectivity between a core region of DMN regions and 
the SN was found to be enhanced after stress induction and suggests a 
top-down regulation of amygdala activity. This connectivity in the re
covery phase after stress might be associated with resilience to stress 
(Veer et al., 2011). The interaction between the DMN and SN in the 
stress process is critical for the generation and regulation of emotional 
reactions in response to stressful situations (Van Oort et al., 2017). One 
study found that rsFC between the SN and DMN may underlie the in
dividual tendency and dynamics of subjective stress recovery (Mar
on-Katz et al., 2016). The current study showed that the connection 
between the DMN and SN is also critical in predicting individual stress 
feeling in daily life and during the COVID-19 pandemic. 

The current study showed that some regions of the SN were critical in 
predicting individual PS, such as the thalamus. Previous task-based 
studies demonstrated the important role of the SN regions in the stress 
process (Li et al., 2014; Menon, 2011; van Oort et al., 2017). The rsFC 
between the thalamus and some nodes of the DMN was found to be 
involved in post-stress rsFC alterations (Maron-Katz et al., 2016; Vais
vaser et al., 2013). The thalamus is critical in arousal regulation and in 
mediating the interaction of attention and arousal in humans (Portas 
et al., 1998; Schiff, 2008). The SN is engaged in orienting attention to 
salient information in the external or internal environment (Menon, 
2011). Previous studies have suggested that increased connectivity be
tween the SN and visual system promotes a state of hypervigilance 
during stressful situations (Liston et al., 2009). In this study, some 
sensory areas were important in predicting individual PS. The connec
tion between the SN and the vision network is also critical in the 
negative psCPM network (see Fig. 2C). The SN may also orient attention 
to salient and emotional information in the internal environment, which 
is supported by connectivity with the DMN (Maron-Katz et al., 2016; 
Quaedflieg et al., 2015a,b; Vaisvaser et al., 2013; Van Oort et al., 2017). 
Based on previous studies, the SN may interact with sensory areas and 
the DMN to orient attention to salient information in the external or 
internal environment. This connectivity may support a hypervigilant 
state that improves threat detection and promotes survival (Hermans 
et al., 2014; van Marle et al., 2009; van Oort et al., 2017). 

An interesting result from this study is that the CPM model of PS 
based on regular days can be generalized to predict the PS level in the 
COVID-19 pandemic situation, which is a multidimensional, uncon
trollable stressful situation. The stability of this result was tested by two 
independent datasets. The behavior results were consistent with those of 
previous studies (Brooks et al., 2020) and showed that individual PS 
scores in the COVID-19 pandemic were higher than those on regular 
days. Although stress levels during the COVID-19 pandemic were 
significantly elevated, psCPM based on regular days can also predict 
inter-individual differences in PS levels. It should be noted that the 
positive model of PS built on data from regular days could not separately 
predict individual PS levels in the COVID-19 pandemic. This might 
suggest that the positive network of PS can be influenced by the situation 
and that the negative network of PS is more stable in predicting indi
vidual stress levels in the full spectrum of stressful days. In the positive 
network of PS, the critical rsFCs included the connection between the 
DMN and visual network. This suggests that the connectivity between 
the visual and somatomotor networks is more heavily influenced by the 
situation and is not suitable for predicting individual stress in the full 
spectrum of stressful days. Our study first provided evidence that the 
subjective feeling of stress across situations can be reliably predicted 
from an individual’s unique rsFC profile. Considering that the increased 
stress during the COVID-19 pandemic had both physical and psycho
logical aspects (Andrews and Wilding, 2004; Baghurst and Kelley, 2014; 
Chrousos, 2000; Faravelli et al., 2012; Gress-Smith et al., 2015; Johnson 
et al., 1992), the CPM of PS would be an objective neuromarker to help 

Table 2 
Top ten nodes with highest degree in the negative network.  

Degree Gyrus Lobe Hemisphere Label MNI (x, 
y, z) 

8 Parahippocampal 
Gyrus 

Temporal 
Lobe 

Left 111 − 25, 
− 25, 
− 26 

6 Parahippocampal 
Gyrus 

Temporal 
Lobe 

Left 115 − 19, 
− 12, 
− 30 

6 Precuneus Parietal Lobe Right 150 7, − 47, 
58 

6 Precuneus Parietal Lobe Left 151 − 12, 
− 67, 
25 

5 Orbital Gyrus Frontal Lobe Left 43 − 36, 
33, 
− 16 

5 Orbital Gyrus Frontal Lobe Left 45 − 23, 
38, 
− 18 

5 Middle Temporal 
Gyrus 

Temporal 
Lobe 

Right 86 60, 
− 53, 3 

5 Inferior Temporal 
Gyrus 

Temporal 
Lobe 

Left 97 − 55, 
− 60, 
− 6 

5 Parahippocampal 
Gyrus 

Temporal 
Lobe 

Right 114 30, 
− 30, 
− 18 

5 Thalamus Subcortical 
Lobe 

Left 245 − 11, 
− 14, 2 

Note. The template information was extracted from the Human Brainnetome 
Atlas. 
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identify high-risk individuals during the COVID-19 pandemic. Predict
ing high PS at the individual provides a novel perspective for the early 
identification of high-risk individuals, and it also provides some insight 
for clinical utility in terms of diagnosis and prognosis in the future. 
Moreover, a better understanding of the neural mechanism of PS with 
rsFC with respect to health may ultimately lead to a better under
standing of how stress contributes to psychopathology in vulnerable 
individuals. 

There are several limitations in the present study. First, we only 
recruited healthy participants given that the aim of this study was early 
identification in a subclinical population. Future studies should test 
whether the psCPM can be generalized to psychological patients who are 
characterized by higher PS levels. Second, we only recruited college 
students as participants because these young adults have high levels of 
stress (Abouserie, 1994; Lupien et al., 2009). The generality of the 
psCPM should be tested with other adults and older healthy participants, 
and some individuals with psychologic problems induced by high levels 
of stress. Third, one recent study used a fMRI-based sustained exposure 
paradigm and demonstrated that stressor-modulated hippocampal net
works can predict individual stress (Goldfarb et al., 2020). Therefore, 
future studies can also use task-fMRI to predict individual PS levels in 
the COVID-19 pandemic and compare neural markers based on rsFC and 
task FC. In addition, recent studies found that the white matter (WM) 
functional connectome offers a novel applicable neuromarker to explore 
brain-behavior relationships, such as fluid intelligence (Li et al., 2020; 
Liao et al., 2020). Future studies should explore whether the WM 
functional connectome could predict individual PS levels. 

5. Conclusion 

In conclusion, we established a brain connectivity-based model that 
was able to predict PS in novel individuals. The results showed that the 
functional interplay between the DMN and SN network associated with 
emotion regulation and salience attribution was crucial for predicting 
individual differences in PS. Critically, this model can be generalized to 
a novel situation, the COVID-19 pandemic, a severely stressful situation. 
This suggests that psCPM appears to provide a robust neuromarker that 
can be useful in making predictions in severely stressful situations 
despite the presence of situation-related changes in behavior. This study 
not only provides some insight into the neural mechanism of PS but also 
has important implications for the early identification of individuals 
enduring high PS levels in nonclinical populations. 
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